With Data Centers, What Can Happen Will Happen (Eventually).

Because data centers and telecom switching centers are designed to withstand failures without interrupting business operations, a 3 a.m. emergency due to a malfunctioning air conditioner should never occur – in theory. But Murphy’s Law says that if a single failure can create an emergency, it will. So, to date, operators have had to react to single-component failures as if they are business-critical. Because they might be.

In my previous blog, I pointed out the two components of risk: the probability of and the consequence of failure. While both of these components are important in failure analysis, it is the consequence of failure that’s most effective at helping decision-makers manage the cost of failure.

If you know there is a high probability of impending failure, but you don’t know the potential consequence, you have to act as though every threat has the potential for an expensive business interruption. Taking such actions is typically expensive. But if you know the consequence, even without knowing the probability of failure, you can react to inconsequential failures at your leisure and plan so that consequential failures are less likely.

In the past, the consequences of a failure weren’t knowable or predictable. The combination of Internet of Things (IoT) data and machine learning has changed all that. It’s now possible to predict the consequence of failure by analyzing large quantities of historical sensor data. These predictions can be performed on demand and without the need for geometrical data hall descriptions.

The advantage of machine learning-based systems is that predictive models are continually tuned to actual operating conditions. Even as things change and scale over time, the model remains accurate without manual intervention. The consequences of actions, in addition to equipment failures, become knowable and predictable.

This type of consequence analysis is particularly important for organizations that have a run-to-failure policy for mechanical equipment. Run-to-failure is common in organizations with severe capital constraints, but it only works, and avoids business interruptions, if the consequence of the next failure is predictable.

Predicting the consequence of failure allows an operations team to avoid over-reacting to failures that do not affect business continuity. Rather than dispatching a technician in the middle of the night, an operations team can address a predicted failure with minimal or no consequence during its next scheduled maintenance. If consequence analysis indicates that a cooling unit failure may put more significant assets at risk, the ability to predict how much time is available before a critical temperature is reached provides time for graceful shutdown – and mitigation.

Preventative maintenance carries risk, but equipment still needs to be shut off at times for maintenance. Will it cause a problem? Predictive consequence analysis can provide the answer. If there’s an issue with shutting off a particular unit, you can know in advance and provide spot cooling to mitigate the risks.

 The ability to predict the consequences of failure, or intentional action such as preventative maintenance, gives facility managers greater control over the reliability of their facilities, and the peace of mind that their operations are as safe as possible.

Consequence Planning Avoids Getting Trapped Between a Rack and a Hot Place

A decade of deploying machine learning in data centers and telecom switching centers throughout the world has taught us a thing or two about risk and reliability management.

In the context of reliability engineering, risk is often defined as the probability of failure times the consequence of the failure. The failure itself, therefore, is only half of the risk consideration. The resulting consequences are equally, and sometimes more, relevant. Data centers typically manage risk with redundancy to reduce the chances of failures that may cause a business interruption. This method reduces the consequence of single component failure. If failure occurs, a redundant component ensures continuity.

When people talk about the role of machine learning in risk and reliability management, most view machine learning from a similar perspective – as a tool for predicting the failure of single components.

But this focus falls short of the true capabilities of machine learning. Don’t get me wrong, predicting the probability of failure is useful – and difficult – to do. But it only has value when the consequence of the predicted failure is significant.

When data centers and telecom switching centers perform and operate as designed, the consequences of most failures are typically small. But most data centers don’t operate as designed, especially the longer they run.

Vigilent uses machine learning to predict the consequences of control actions. We use machine learning to train our Influence Map™ to make accurate predictions of cooling control actions, including what will happen when a cooling unit is turned on or off. If the Influence Map predicts that turning a particular unit off would cause a rack to become too hot, the system won’t turn that cooling unit off.

The same process can be used to predict the consequence of a cooling unit failure. In other words, the Influence Map can predict the potential business impact of a particular cooling unit failure, such as whether a rack will get hot enough to impact business continuity. This kind of failure analysis simultaneously estimates the redundancy of the cooling system.

This redundancy calculation doesn’t merely compare the total cooling capacity with the total heat load of the equipment. Fully understanding the consequence of a failure requires both predictive modeling and machine learning. Together, these technologies accurately model actual, real time system behavior in order to predict and manage the cost of that failure.

This is why the distinction between failures and consequences matter. Knowing the consequences of failure enables you to predict the cost of failure.

Some predicted failures might not require a 3 a.m. dispatch. In my next blog, I’ll outline the material advantages of understanding consequences and the resulting effect on redundancy planning and maintenance operations.

The Real Cost of Cooling Configuration Errors

Hands in the network cause problems. A setting adjusted once, based on someone’s instinct of what needed to be changed at one moment in time, is often unmodified years later.

This is configuration rot. If your data center has been running for a while, the chances are pretty high that your cooling configurations, to name one example, are wildly out of sync. It’s even more likely you don’t know about it.

Every air conditioner is controlled by an embedded computer. Each computer supports multiple configuration parameters. Each of these different configurations can be perfectly acceptable. But a roomful of air conditioners with individually sensible configurations can produce bad outcomes when their collective impact is considered.

I recently toured a new data center in which each air conditioner supported 17 configuration parameters affecting temperature and humidity. There was a lot of unexplainable variation in the configurations. Six of the 17 configuration settings varied by more than 30%, unit to unit. Only five configurations were the same. Configuration variation initially and entropy over time wastes energy and prevents the overall air conditioning system from producing an acceptable temperature and humidity distribution.

Configuration errors contribute to accidental de-rating and loss of capacity. This wastes energy, and it’s costly from a capex perceptive. Perhaps you don’t need a new air conditioner. Instead, perhaps you can optimize or synchronize the configurations for the air conditioners you already have and unlock the capacity you need. Another common misconfiguration error is incompatible set points. If one air conditioner is trying to make a room cold and another is trying to make it warmer, the units will fight.

Configuration errors also contribute to poor free cooling performance. Misconfiguration can lock out free cooling in many ways.

The problem is significant. Large organizations use thousands of air conditioners. Manual management of individual configurations is impossible. Do the math. If you have 2000 air conditioners, each of which has up to 17 configuration parameters, you have 34,000 configuration possibilities, not to mention the additional external variables. How can you manage, much less optimize configurations over time?

Ideally, you need intelligent software that manages these configurations automatically. You need templates that prescribe optimized configuration. You need visibility to determine, on a regular basis, which configurations are necessary as conditions change. You need exception handling, so you can temporarily change configurations when you perform tasks such as maintenance, equipment swaps, and new customer additions, and then make sure the configurations return to their optimized state afterward. And, you need a system that will alert you when someone tries to change a configuration, and/or enforce optimized configurations automatically.

This concept isn’t new. It’s just rarely done. But if you aren’t aggressively managing configurations, you are losing money.

The Fastest Route to Using Data Analysis in Data Center Operations

voltThe transition to data-driven operations within data centers is inevitable.  In fact, it has already begun.

With this in mind, my last blog questioned why data centers still resist data use, surmising that because data use doesn’t fall within traditional roles and training, third parties – and new tools – will be needed to help with the transition. “Retrofitting” existing personnel, at least in the short term, is unrealistic.  And time matters.

Consider the example of my Chevy Volt.  The Volt illustrates just how quickly a traditional industry can be caught flat-footed in a time of transition, opening opportunities for others to seize market share. The Volt is as much a rolling mass of interconnected computers as it is a car. It has 10 million lines of code. 10 million!  That’s more than a F-22 Raptor, the most advanced fighter plane on earth.

The Volt of course, needs regular service just like any car.  While car manufacturers were clearly pivoting toward complex software-driven engines, car dealerships were still staffed with engine mechanics, albeit highly skilled mechanics.  During my service experience, the dealership had one guy trained and equipped to diagnose and tune the Volt.  One guy.  Volts were and are selling like crazy.  And when that guy was on vacation, I had to wait.

So, the inevitable happened.  Third party service shops, which were fully staffed with digitally-savvy technicians specifically trained in electric vehicle maintenance, quickly gained business.  Those shops employed mechanics, but the car diagnostics were performed by technology experts who could provide the mechanics with very specific guidance from the car’s data.  In addition, I had direct access to detail about the operation of my car from monthly reports delivered by OnStar, enabling me to make more informed driving, maintenance and purchase decisions.

Most dealerships weren’t prepared for the rapid shift from servicing mechanical systems to servicing computerized systems.  Referencing my own experience, the independent service shop that had been servicing my other, older car, very quickly transitioned to service all kinds of electric service vehicles.  Their agility in adjusting to new market conditions brought them a whole new set of service opportunities.  The Chevy dealership, on the other hand, created a service vacuum that opened business for others.

The lesson here is to transition rapidly to new market conditions.  Oftentimes, using external resources is the fastest way to transition to a new skillset without taking your eye off operations, without making a giant investment, and while creating a path to incorporating these skills into your standard operating procedures over time. 

During transitions, and as your facility faces learning curve challenges, it makes sense to turn to resources that have the expertise and the tools at hand.  Because external expert resources work with multiple companies, they also bring the benefit of collective perspective, which can be brought to bear on many different types of situations.

In an outsourced model, and specifically in the case of data analytics services, highly experienced and focused data specialists can be responsible for collecting, reviewing and regularly reporting back to facility managers on trends, exceptions, actions to take and potentially developing issues.  These specialists augment the facility manager’s ability to steer his or her data centers through a transition to more software and data intensive systems, without the time hit or distraction of engaging a new set of skills.  Also, as familiarity with using data evolves, the third party can train data center personnel, providing operators with direct access to data and indicative metrics in the short term, while creating a foundation for the eventual onboarding of data analysis operations.  

Data analysis won’t displace existing data center personnel.  It is an additional and critical function that can be supported internally or externally.  Avoiding the use of data to improve data center operations is career-limiting.  Until data analysis skills and tools are embedded within day-to-day operations, hiring a data analysis service can provide immediate relief and help your team transition to adopt these skills over time.  

Analytics in Action for Data Center Cooling

When a data center is first designed, everything is tightly controlled. Rack densities are all the same. The layout is precisely planned and very consistent. Power and space constraints are well-understood. The cooling system is modeled – sometimes even with CFD – and all of the cooling units operate at the same level.

But the original design is often a short-lived utopia. The realty of most data centers becomes much more complex as business needs and IT requirements change and equipment moves in and out.

As soon as physical infrastructure changes, cooling capacity and redundancy are affected.  Given the complexity of design versus operational reality, many organizations have not had the tools to understand what has changed or degraded, so cannot make informed decisions about their cooling infrastructure. Traditional DCIM products often focus on space, network and power.  They don’t provide detailed, measured data on the cooling system.  So, decisions about cooling are made without visibility into actual conditions.

Analytics can help. Contrary to prevailing views, analytics don’t necessarily take a lot of know-how or data analysis skills to be extremely helpful in day-to-day operations management. Analytics can be simple and actionable. Consider the following examples of how a daily morning glance at thermal analytics helped these data center managers quickly identify and resolve some otherwise tricky thermal issues.

In our first example, the manager of a legacy, urban colo data center with DX CRAC units was asked to determine the right place for some new IT equipment. There were several areas with space and power available, but determining which of these areas had sufficient cooling was more challenging. The manager used a cooling influence map to identify racks cooled by multiple CRACs. He then referenced a cooling capacity report to confirm that more than one of these CRACs had capacity to spare. By using these visual analytics, the manager was able to place the IT equipment in an area with sufficient, and redundant, cooling.

In a second facility, a mobile switching center for a major telco, the manager noticed a hot spot on the thermal map and sent a technician to investigate the location. The technician saw that some of the cooling coils had low delta T even though the valves were open, which implied a problem with the hydronics. Upon physical investigation of the area, he discovered that this was caused by trapped air in the coil, so he bled it off. The delta T quickly went from 3 to 8.5 – a capacity increase of more than 65 percent – as displayed on the following graph:

 

DeltaT

These examples are deceptively simple. But without analytics, the managers would not have been able to as easily identify the exact location of the problem, the cooling units involved, and have enough information to direct trouble-shooting action within the short time needed to resolve problems in a mission critical facility.

Analytics typically use the information already available in a properly monitored data center. They complement the experienced intuition of data center personnel with at-a-glance data that helps identify potential issues more quickly and bypasses much of the tedious, blood pressure-raising and time-consuming diagnostic activities of hotspot resolution.

Analytics are not the future. Analytics have arrived. Data centers that aren’t taking advantage of them are riskier and more expensive to operate, and place themselves at competitive disadvantage

A Look at 2014

In 2014 we leveraged the significant company, market and customer expansion we achieved in 2013 to focus on strategic partnerships.  Our goal was to significantly increase our global footprint with the considerable resources and vision of these industry leaders.  We have achieved that goal and more.

Together with our long-standing partner NTT Facilities, we continue to add power and agility to complementary data center product lines managed by NTT in pan-Asia deployments.  In partnership with Schneider Electric, we are proud to announce the integration of Vigilent dynamic cooling management technology into the Cooling Optimize module of Schneider Electric’s industry-leading DCIM suite, StruxureWare for Data Centers.

Beyond the technical StruxureWare integration, Vigilent has also worked closely with Schneider Electric to train hundreds of Schneider Electric sales and field operations professionals in preparation for the worldwide roll-out of Cooling Optimize.  Schneider Electric’s faith in us has already proven well-founded as deployments are already underway across multiple continents.  With the reach of Schneider Electric’s global sales and marketing operations, their self-described “Big Green Machine,” and NTT Facilities’ expanding traction in and outside of Japan, we anticipate a banner year.

As an early adopter of machine learning, Vigilent has been recognized as a pioneer of the Internet of Things (IoT) for energy.  Data collected over seven years from hundreds of deployments continually informs and improves Vigilent system performance.  The analytics we have developed provide unprecedented visibility into data center operations and are driving the introduction of new Vigilent capabilities.

Business success aside, our positive impact on the world continues to grow.  In late 2014, we announced that Vigilent systems have reduced energy consumption by more than half a billion kilowatt hours and eliminated more than 351,000 tons of CO2 emissions.  These figures are persistent and grow with each new deployment.

We are proud to see our customers turn pilot projects into multiple deployments as the energy savings and data center operational benefits of the system prove themselves over and over again.  This organic growth is testimony to the consistency of the Vigilent product’s operation in widely varying mission critical environments.

Stay tuned to watch this process repeat itself as we add new Fortune 50 logos to our customer base in 2015.  We applaud the growing sophistication of the data center industry as it struggles with the dual challenges of explosive growth and environmental stewardship and remain thankful for our part in that process.