How Did I Live Without My AI-Driven Cooling?

Driving the other day, I decided to grab a quick bite to eat on the way home. I quickly launched my maps application, searched on the type of food I wanted, picked a local place, made sure they had decent reviews, checked their hours, and started the navigation guidance to tell me how to get there quickly.

When I did this, I was hungry. A few seconds later, I was on my way to solving that issue.

But I didn’t break it down that I was using a mobile-sized computer to triangulate my position on the globe from satellites. I didn’t then overlay a series of restaurants from a back-end database on top of that map, which was then integrated with a reviews database as well as location-specific information about that restaurant and its hours of operation. I didn’t follow that up by evaluating different routes from my current location to the restaurant, and deciding which one to take.

This was all on auto-pilot. I decided I wanted food, looked up restaurants, made sure the food was good, the place was open, and went. This took just seconds of my time.

We get so much information from simple swipes and glances that we forget what’s really guiding all of those interactions under the hood.

All the ways that we live, work, drive, interact…have all gone beyond the scope of what many of these technologies were originally designed to do.

And it only makes sense that this sort of distillation of technology to simplify our lives has also found its way into the data center, especially with the advancement of artificial intelligence for optimization and operation of cooling systems. Data Center Knowledge described recent advancements in an article on machine learning.

We’re not quite at the fully automated, human-to-computer interfaces seen in futuristic shows like Star Trek, but the day is rapidly approaching when you can “make it so.” Just like the technology above, you’ll wonder how you ever managed without AI-driven cooling(tm).

In an AI-driven data center, you can already:

  • Continually monitor conditions on your console or mobile device, from anywhere
  • Know which racks have redundant cooling so you can orchestrate variable workloads automatically
  • Identify the effects of “hands in the network” by viewing real-time or time-sequenced heat maps and data
  • See where the cooling is being delivered using Influence Maps™
  • See when floor panels haven’t been put back or blanked
  • Verify that work has been completed successfully using data and performance metrics (and hold vendors accountable)
  • Review anomalies that result from unexpected behavior even if they have already been mitigated by AI-driven cooling, and then review the data to see what and where you need to focus

This real-time information is immediately and continually visible from your dashboard. Walking the floor is only necessary for physical or configuration changes.

You can already see – and be able to prove – whether you really need that new CRAC, or if by shifting IT load or cooling you’ll net the same effect. You can see if your free cooling is operating as designed and have the data to troubleshoot it if not. AI-driven cooling automatically resolves issues and gives you the additional time – and critical data — to investigate further if need be.

AI-driven cooling enables autonomous, truly remote data centers to become even more cost effective as your best facility personnel can manage your most critical facilities – from miles or continents away.

Highly variable data centers which house very high-density high-heat-producing racks, in the proximity of others that don’t, will be easier to manage with less stress. Because AI-driven cooling understands the distinct cooling requirements of any situation it can automatically manage airflow within the same room for optimum efficiency.

When Fortune Magazine forecasted the “25 Ways AI is Changing Business,” they said that “the reality is that no one knows or can know what’s ahead, not even approximately. The reason is that we can never foresee human ingenuity, all the ways in which millions of motivated entrepreneurs and managers worldwide will apply rapidly improving technology.” But just as you and I have already seen what AI and mobile phone technology has done for our lives, so will it be for data center infrastructure.

And, like the power available through our mobile phones, someday soon we’ll wonder how we ever managed without AI-driven data centers.

With Data Centers, What Can Happen Will Happen (Eventually).

Because data centers and telecom switching centers are designed to withstand failures without interrupting business operations, a 3 a.m. emergency due to a malfunctioning air conditioner should never occur – in theory. But Murphy’s Law says that if a single failure can create an emergency, it will. So, to date, operators have had to react to single-component failures as if they are business-critical. Because they might be.

In my previous blog, I pointed out the two components of risk: the probability of and the consequence of failure. While both of these components are important in failure analysis, it is the consequence of failure that’s most effective at helping decision-makers manage the cost of failure.

If you know there is a high probability of impending failure, but you don’t know the potential consequence, you have to act as though every threat has the potential for an expensive business interruption. Taking such actions is typically expensive. But if you know the consequence, even without knowing the probability of failure, you can react to inconsequential failures at your leisure and plan so that consequential failures are less likely.

In the past, the consequences of a failure weren’t knowable or predictable. The combination of Internet of Things (IoT) data and machine learning has changed all that. It’s now possible to predict the consequence of failure by analyzing large quantities of historical sensor data. These predictions can be performed on demand and without the need for geometrical data hall descriptions.

The advantage of machine learning-based systems is that predictive models are continually tuned to actual operating conditions. Even as things change and scale over time, the model remains accurate without manual intervention. The consequences of actions, in addition to equipment failures, become knowable and predictable.

This type of consequence analysis is particularly important for organizations that have a run-to-failure policy for mechanical equipment. Run-to-failure is common in organizations with severe capital constraints, but it only works, and avoids business interruptions, if the consequence of the next failure is predictable.

Predicting the consequence of failure allows an operations team to avoid over-reacting to failures that do not affect business continuity. Rather than dispatching a technician in the middle of the night, an operations team can address a predicted failure with minimal or no consequence during its next scheduled maintenance. If consequence analysis indicates that a cooling unit failure may put more significant assets at risk, the ability to predict how much time is available before a critical temperature is reached provides time for graceful shutdown – and mitigation.

Preventative maintenance carries risk, but equipment still needs to be shut off at times for maintenance. Will it cause a problem? Predictive consequence analysis can provide the answer. If there’s an issue with shutting off a particular unit, you can know in advance and provide spot cooling to mitigate the risks.

 The ability to predict the consequences of failure, or intentional action such as preventative maintenance, gives facility managers greater control over the reliability of their facilities, and the peace of mind that their operations are as safe as possible.

Consequence Planning Avoids Getting Trapped Between a Rack and a Hot Place

A decade of deploying machine learning in data centers and telecom switching centers throughout the world has taught us a thing or two about risk and reliability management.

In the context of reliability engineering, risk is often defined as the probability of failure times the consequence of the failure. The failure itself, therefore, is only half of the risk consideration. The resulting consequences are equally, and sometimes more, relevant. Data centers typically manage risk with redundancy to reduce the chances of failures that may cause a business interruption. This method reduces the consequence of single component failure. If failure occurs, a redundant component ensures continuity.

When people talk about the role of machine learning in risk and reliability management, most view machine learning from a similar perspective – as a tool for predicting the failure of single components.

But this focus falls short of the true capabilities of machine learning. Don’t get me wrong, predicting the probability of failure is useful – and difficult – to do. But it only has value when the consequence of the predicted failure is significant.

When data centers and telecom switching centers perform and operate as designed, the consequences of most failures are typically small. But most data centers don’t operate as designed, especially the longer they run.

Vigilent uses machine learning to predict the consequences of control actions. We use machine learning to train our Influence Map™ to make accurate predictions of cooling control actions, including what will happen when a cooling unit is turned on or off. If the Influence Map predicts that turning a particular unit off would cause a rack to become too hot, the system won’t turn that cooling unit off.

The same process can be used to predict the consequence of a cooling unit failure. In other words, the Influence Map can predict the potential business impact of a particular cooling unit failure, such as whether a rack will get hot enough to impact business continuity. This kind of failure analysis simultaneously estimates the redundancy of the cooling system.

This redundancy calculation doesn’t merely compare the total cooling capacity with the total heat load of the equipment. Fully understanding the consequence of a failure requires both predictive modeling and machine learning. Together, these technologies accurately model actual, real time system behavior in order to predict and manage the cost of that failure.

This is why the distinction between failures and consequences matter. Knowing the consequences of failure enables you to predict the cost of failure.

Some predicted failures might not require a 3 a.m. dispatch. In my next blog, I’ll outline the material advantages of understanding consequences and the resulting effect on redundancy planning and maintenance operations.

The Real Cost of Cooling Configuration Errors

Hands in the network cause problems. A setting adjusted once, based on someone’s instinct of what needed to be changed at one moment in time, is often unmodified years later.

This is configuration rot. If your data center has been running for a while, the chances are pretty high that your cooling configurations, to name one example, are wildly out of sync. It’s even more likely you don’t know about it.

Every air conditioner is controlled by an embedded computer. Each computer supports multiple configuration parameters. Each of these different configurations can be perfectly acceptable. But a roomful of air conditioners with individually sensible configurations can produce bad outcomes when their collective impact is considered.

I recently toured a new data center in which each air conditioner supported 17 configuration parameters affecting temperature and humidity. There was a lot of unexplainable variation in the configurations. Six of the 17 configuration settings varied by more than 30%, unit to unit. Only five configurations were the same. Configuration variation initially and entropy over time wastes energy and prevents the overall air conditioning system from producing an acceptable temperature and humidity distribution.

Configuration errors contribute to accidental de-rating and loss of capacity. This wastes energy, and it’s costly from a capex perceptive. Perhaps you don’t need a new air conditioner. Instead, perhaps you can optimize or synchronize the configurations for the air conditioners you already have and unlock the capacity you need. Another common misconfiguration error is incompatible set points. If one air conditioner is trying to make a room cold and another is trying to make it warmer, the units will fight.

Configuration errors also contribute to poor free cooling performance. Misconfiguration can lock out free cooling in many ways.

The problem is significant. Large organizations use thousands of air conditioners. Manual management of individual configurations is impossible. Do the math. If you have 2000 air conditioners, each of which has up to 17 configuration parameters, you have 34,000 configuration possibilities, not to mention the additional external variables. How can you manage, much less optimize configurations over time?

Ideally, you need intelligent software that manages these configurations automatically. You need templates that prescribe optimized configuration. You need visibility to determine, on a regular basis, which configurations are necessary as conditions change. You need exception handling, so you can temporarily change configurations when you perform tasks such as maintenance, equipment swaps, and new customer additions, and then make sure the configurations return to their optimized state afterward. And, you need a system that will alert you when someone tries to change a configuration, and/or enforce optimized configurations automatically.

This concept isn’t new. It’s just rarely done. But if you aren’t aggressively managing configurations, you are losing money.

When Free Cooling Isn’t Free

Published in Data Center Dynamics.

The use of free cooling systems is quickly becoming common practice – particularly in new mission critical facility builds. Using outside air, either directly or indirectly, to cool ICT equipment is undeniably compelling, both logically and financially.

But is free air really free? Not always. Free cooling systems add considerable complexity to the operation and maintenance of mechanical equipment. If this complexity isn’t recognized or managed well, free cooling will add to energy costs and increase operational risk.

Watch the weather

Weather is the most obvious variable. Free cooling capacity declines in hot weather, requiring a design that either allows for elevated indoor temperatures or combines free cooling with conventional mechanical cooling to ensure that indoor temperatures remain within an acceptable range.

Multiple operating modes are another complicating factor. For example, the free cooling system at Facebook’s Prineville data center (pictured) uses eight distinct operating conditions to optimize the use of direct outside air and direct evaporative cooling under different weather conditions. Free cooling systems that use direct outside air augmented by compressorized cooling have at least three distinct operating conditions.

Maintenance also becomes more complex. Free cooling adds to the number of moving mechanical components (e.g. air dampers and actuators) that are in direct contact with outdoor air. Outdoor air is corrosive, which can cause the dampers and actuators to get stuck, and either fail to provide cooling or cause the system to bring in hot outdoor air when it should not. Free cooling systems with evaporative cooling have the added maintenance of cooling water, which requires chemical treatment and periodic flushing.

This complexity can significantly impact the energy reduction that free cooling can deliver, while creating real thermal management problems.

High failure rates

Accordingly, the high failure rates of free cooling systems are well documented in energy efficiency and building technology literature. A particularly good and practical paper entitled Free Cooling, At What Cost was written by Kristen Heinemeier and presented at the 2014 ACEEE Summer Study on Energy Efficiency in Buildings. My direct experience with free cooling systems throughout the US and Europe is completely consistent with Heinemeier’s paper. Specifically, I have seen even higher failure rates in mission critical facilities than in the commercial buildings referenced in Heinemeier’s paper.

Heinemeier examined the prevalence and impact of air-side economizer (direct free cooling) failure. She found that although economizers are an excellent energy saving technology, they do not perform well in practice. In California alone, she cites that in surveyed facilities, the economizer is disabled and outside air dampers are closed 30 – 40 percent of the time. She states: “This type of failure means that the economizer is not providing any savings, and that the building may not be bringing in any outside air. Other studies have found that the high-limit setpoints, set by technicians, are incorrect on the majority of RTUs in California, resulting in very few hours in the ‘free cooling’ range.”

I recently toured five sites in two countries, owned by different multinational companies, using cooling equipment from three different manufacturers.

Among the dozens of free cooling units that I observed on this trip, nearly all either had a problem that limited capacity and function or weren’t working at all. Problems included controller configuration, sensor failure, installation faults, and mechanical failures.

Some examples:

  • In one site, the outdoor air was cool but the outside air dampers were fully closed and the unit was recirculating indoor air. The temperature remained within an acceptable range; however, this was because the DX compressors were running unnecessarily – at massive cost. The operators knew that the free cooling should be operating, but didn’t know why it wasn’t. The facility had been operating that way since the free cooling units had been installed – about a year prior. Inspection of the units revealed that the controls weren’t configured properly, and that misconfigured control logic was preventing the free cooling from operating. I saw a similar scenario in a second site.
  • At another site I observed that the controls were working and appeared to be pulling in outside air. However, the discharge air on one particular unit wasn’t as cold as I would have expected. Inspection of the unit revealed that BOTH the outside air dampers and the return air dampers were closed. The damper actuator clamp on the outside air damper had either fallen off or been removed, leaving that damper stuck in the fully closed position. This problem was identified by analyzing data from the cooling optimization sensor network
  • At yet another site, I saw that the controls were working, the dampers were working and that cold air was produced – just not very much. We measured a large temperature difference in the outdoor air intake across the outside wall. The outside air duct was installed with a flanged connection to the wall. At a nearby site with the same free cooling equipment, the outside air duct penetrated the wall. The flanged installation caused the cooling units to draw air from the hollow wall construction, reducing the capacity of the free cooling by up to 40 percent. This problem was also identified by analyzing sensor network data.

What’s important to note is that while in each case the free cooling system had problems, they were all fixable problems – often with little or no investment. More significantly, operators didn’t always recognize that their free cooling was compromised, nor how it could be fixed. Besides the additional energy costs and potential thermal risk incurred by this lack of visibility, these facilities were on the verge of spending a lot of money in pursuit of a solution, when in fact their existing equipment would achieve the desired operation.

Monitor your cooling system

Because free cooling systems are highly efficient when they do work as intended, best practice would suggest that risk mitigation and visibility through a monitoring system is required to realize the safe operation and full benefit of free cooling. In California, Title 24 requires diagnostics for use with free cooling systems. Dynamic monitoring, analytics, and diagnostics in conjunction with visual inspection will reveal issues and help ensure the ongoing and proper operation of free cooling within a complex cooling infrastructure. In mission critical facilities that are operated lights-out, use of remote monitoring and analytics combined with intelligent alerting is the only way to ensure reliable operation of free cooling.

As free cooling becomes a standard means of cooling mission critical facilities, consideration of the risk and complexity it adds is critical. Data-driven oversight of cooling operations, in combination with a layer of smart analytics and control, is the best-practice way to ensure your thermal environment continually operates in the most efficient way possible. This oversight also ensures that you continue to optimize your capital investment, even as conditions, weather and physical changes occur over time.

2016 and Looking Forward

2016-imageTo date, Vigilent has saved more than 1 billion kilowatt hours of energy, delivering $100 million in savings to our customers.  This also means we reduced the amount of CO2 released into the atmosphere by over 700,000 metric tons, equivalent to not acquiring and burning almost 4000 railcars of coal.  This matters because climate change is real.

Earlier this year, Vigilent announced its support for the Low-Carbon USA initiative, a consortium of leading businesses across the United States that support the Paris Climate Accord with the goal of reducing global temperature rise to well below 2 degrees Celsius.  Conservation plays its part, but innovation driving efficiency and renewable power creation will make the real difference.  Vigilent and its employees are fiercely proud to be making a tangible difference every day with the work that we do.

Beyond this remarkable energy savings milestone, I am very proud of the market recognition Vigilent achieved this year.  Bloomberg recognized Vigilent as a “New Energy Pioneer.”  Fierce Innovation named Vigilent the Best in Show:  Green Application & Data Centers (telecom category.)

Of equal significance, Vigilent has become broadly recognized as a leader in the emerging field of industrial IoT.  With our early start in this industry, integrating sensors and machine learning for measurable advantage long before they ever became a “thing,” Vigilent has demonstrated significant market traction with concrete results.  The industry has recognized Vigilent’s IoT achievements with the following awards this year:

TiE50                    Top Startup: IoT

IoT Innovator     Best Product: Commercial and Industrial Software

We introduced Vigilent prescriptive analytics this summer with shocking results, and I say that in a good way.  Our customers have uniformly received insights that surprised them.  These insights have ranged from unrealized capacity to failing equipment in critical areas.  The analytics are also helping customers meet SLA requirements with virtually no extra work and to identify areas ranging out of compliance, enabling facility operators to quickly resolve issues as soon as a temperature goes beyond a specified threshold.

Vigilent dynamic cooling management systems are actively used in the world’s largest colos and telcos, and in Fortune 500 companies spanning the globe.  We have expanded relationships with long-term partners’ NTT Facilities and Schneider Electric, who have introduced Vigilent to new regions such as Latin America and Greater Asia.  We signed a North America-focused partnership with Siemens, which leverages Siemens Demand Flow and the Vigilent system to optimize efficiency and manage data center challenges across the white space and chiller plant. We are very pleased that the world’s leading data center infrastructure and service vendors have chosen to include Vigilent in their solution portfolio.

We thank you, our friends, customers and partners, for your continued support and look forward to another breakout year as we help the businesses of the world manage energy use intelligently and combat climate change.

 

How Did I Live Without My AI-Driven Cooling?

Driving the other day, I decided to grab a quick bite to eat on the way home. I quickly launched my maps application, searched on the type of food I wanted, picked a local place, made sure they had decent reviews, checked their hours, and started the … [Read more]

With Data Centers, What Can Happen Will Happen (Eventually).

Because data centers and telecom switching centers are designed to withstand failures without interrupting business operations, a 3 a.m. emergency due to a malfunctioning air conditioner should never occur – in theory. But Murphy’s Law says that if a … [Read more]

Consequence Planning Avoids Getting Trapped Between a Rack and a Hot Place

A decade of deploying machine learning in data centers and telecom switching centers throughout the world has taught us a thing or two about risk and reliability management. In the context of reliability engineering, risk is often defined as the … [Read more]

The Real Cost of Cooling Configuration Errors

Hands in the network cause problems. A setting adjusted once, based on someone's instinct of what needed to be changed at one moment in time, is often unmodified years later. This is configuration rot. If your data center has been running for a … [Read more]

When Free Cooling Isn’t Free

Published in Data Center Dynamics. The use of free cooling systems is quickly becoming common practice – particularly in new mission critical facility builds. Using outside air, either directly or indirectly, to cool ICT equipment is undeniably … [Read more]

2016 and Looking Forward

To date, Vigilent has saved more than 1 billion kilowatt hours of energy, delivering $100 million in savings to our customers.  This also means we reduced the amount of CO2 released into the atmosphere by over 700,000 metric tons, equivalent to not … [Read more]