How Did I Live Without My AI-Driven Cooling?

Driving the other day, I decided to grab a quick bite to eat on the way home. I quickly launched my maps application, searched on the type of food I wanted, picked a local place, made sure they had decent reviews, checked their hours, and started the navigation guidance to tell me how to get there quickly.

When I did this, I was hungry. A few seconds later, I was on my way to solving that issue.

But I didn’t break it down that I was using a mobile-sized computer to triangulate my position on the globe from satellites. I didn’t then overlay a series of restaurants from a back-end database on top of that map, which was then integrated with a reviews database as well as location-specific information about that restaurant and its hours of operation. I didn’t follow that up by evaluating different routes from my current location to the restaurant, and deciding which one to take.

This was all on auto-pilot. I decided I wanted food, looked up restaurants, made sure the food was good, the place was open, and went. This took just seconds of my time.

We get so much information from simple swipes and glances that we forget what’s really guiding all of those interactions under the hood.

All the ways that we live, work, drive, interact…have all gone beyond the scope of what many of these technologies were originally designed to do.

And it only makes sense that this sort of distillation of technology to simplify our lives has also found its way into the data center, especially with the advancement of artificial intelligence for optimization and operation of cooling systems. Data Center Knowledge described recent advancements in an article on machine learning.

We’re not quite at the fully automated, human-to-computer interfaces seen in futuristic shows like Star Trek, but the day is rapidly approaching when you can “make it so.” Just like the technology above, you’ll wonder how you ever managed without AI-driven cooling(tm).

In an AI-driven data center, you can already:

  • Continually monitor conditions on your console or mobile device, from anywhere
  • Know which racks have redundant cooling so you can orchestrate variable workloads automatically
  • Identify the effects of “hands in the network” by viewing real-time or time-sequenced heat maps and data
  • See where the cooling is being delivered using Influence Maps™
  • See when floor panels haven’t been put back or blanked
  • Verify that work has been completed successfully using data and performance metrics (and hold vendors accountable)
  • Review anomalies that result from unexpected behavior even if they have already been mitigated by AI-driven cooling, and then review the data to see what and where you need to focus

This real-time information is immediately and continually visible from your dashboard. Walking the floor is only necessary for physical or configuration changes.

You can already see – and be able to prove – whether you really need that new CRAC, or if by shifting IT load or cooling you’ll net the same effect. You can see if your free cooling is operating as designed and have the data to troubleshoot it if not. AI-driven cooling automatically resolves issues and gives you the additional time – and critical data — to investigate further if need be.

AI-driven cooling enables autonomous, truly remote data centers to become even more cost effective as your best facility personnel can manage your most critical facilities – from miles or continents away.

Highly variable data centers which house very high-density high-heat-producing racks, in the proximity of others that don’t, will be easier to manage with less stress. Because AI-driven cooling understands the distinct cooling requirements of any situation it can automatically manage airflow within the same room for optimum efficiency.

When Fortune Magazine forecasted the “25 Ways AI is Changing Business,” they said that “the reality is that no one knows or can know what’s ahead, not even approximately. The reason is that we can never foresee human ingenuity, all the ways in which millions of motivated entrepreneurs and managers worldwide will apply rapidly improving technology.” But just as you and I have already seen what AI and mobile phone technology has done for our lives, so will it be for data center infrastructure.

And, like the power available through our mobile phones, someday soon we’ll wonder how we ever managed without AI-driven data centers.

With Data Centers, What Can Happen Will Happen (Eventually).

Because data centers and telecom switching centers are designed to withstand failures without interrupting business operations, a 3 a.m. emergency due to a malfunctioning air conditioner should never occur – in theory. But Murphy’s Law says that if a single failure can create an emergency, it will. So, to date, operators have had to react to single-component failures as if they are business-critical. Because they might be.

In my previous blog, I pointed out the two components of risk: the probability of and the consequence of failure. While both of these components are important in failure analysis, it is the consequence of failure that’s most effective at helping decision-makers manage the cost of failure.

If you know there is a high probability of impending failure, but you don’t know the potential consequence, you have to act as though every threat has the potential for an expensive business interruption. Taking such actions is typically expensive. But if you know the consequence, even without knowing the probability of failure, you can react to inconsequential failures at your leisure and plan so that consequential failures are less likely.

In the past, the consequences of a failure weren’t knowable or predictable. The combination of Internet of Things (IoT) data and machine learning has changed all that. It’s now possible to predict the consequence of failure by analyzing large quantities of historical sensor data. These predictions can be performed on demand and without the need for geometrical data hall descriptions.

The advantage of machine learning-based systems is that predictive models are continually tuned to actual operating conditions. Even as things change and scale over time, the model remains accurate without manual intervention. The consequences of actions, in addition to equipment failures, become knowable and predictable.

This type of consequence analysis is particularly important for organizations that have a run-to-failure policy for mechanical equipment. Run-to-failure is common in organizations with severe capital constraints, but it only works, and avoids business interruptions, if the consequence of the next failure is predictable.

Predicting the consequence of failure allows an operations team to avoid over-reacting to failures that do not affect business continuity. Rather than dispatching a technician in the middle of the night, an operations team can address a predicted failure with minimal or no consequence during its next scheduled maintenance. If consequence analysis indicates that a cooling unit failure may put more significant assets at risk, the ability to predict how much time is available before a critical temperature is reached provides time for graceful shutdown – and mitigation.

Preventative maintenance carries risk, but equipment still needs to be shut off at times for maintenance. Will it cause a problem? Predictive consequence analysis can provide the answer. If there’s an issue with shutting off a particular unit, you can know in advance and provide spot cooling to mitigate the risks.

 The ability to predict the consequences of failure, or intentional action such as preventative maintenance, gives facility managers greater control over the reliability of their facilities, and the peace of mind that their operations are as safe as possible.

Consequence Planning Avoids Getting Trapped Between a Rack and a Hot Place

A decade of deploying machine learning in data centers and telecom switching centers throughout the world has taught us a thing or two about risk and reliability management.

In the context of reliability engineering, risk is often defined as the probability of failure times the consequence of the failure. The failure itself, therefore, is only half of the risk consideration. The resulting consequences are equally, and sometimes more, relevant. Data centers typically manage risk with redundancy to reduce the chances of failures that may cause a business interruption. This method reduces the consequence of single component failure. If failure occurs, a redundant component ensures continuity.

When people talk about the role of machine learning in risk and reliability management, most view machine learning from a similar perspective – as a tool for predicting the failure of single components.

But this focus falls short of the true capabilities of machine learning. Don’t get me wrong, predicting the probability of failure is useful – and difficult – to do. But it only has value when the consequence of the predicted failure is significant.

When data centers and telecom switching centers perform and operate as designed, the consequences of most failures are typically small. But most data centers don’t operate as designed, especially the longer they run.

Vigilent uses machine learning to predict the consequences of control actions. We use machine learning to train our Influence Map™ to make accurate predictions of cooling control actions, including what will happen when a cooling unit is turned on or off. If the Influence Map predicts that turning a particular unit off would cause a rack to become too hot, the system won’t turn that cooling unit off.

The same process can be used to predict the consequence of a cooling unit failure. In other words, the Influence Map can predict the potential business impact of a particular cooling unit failure, such as whether a rack will get hot enough to impact business continuity. This kind of failure analysis simultaneously estimates the redundancy of the cooling system.

This redundancy calculation doesn’t merely compare the total cooling capacity with the total heat load of the equipment. Fully understanding the consequence of a failure requires both predictive modeling and machine learning. Together, these technologies accurately model actual, real time system behavior in order to predict and manage the cost of that failure.

This is why the distinction between failures and consequences matter. Knowing the consequences of failure enables you to predict the cost of failure.

Some predicted failures might not require a 3 a.m. dispatch. In my next blog, I’ll outline the material advantages of understanding consequences and the resulting effect on redundancy planning and maintenance operations.

2016 and Looking Forward

2016-imageTo date, Vigilent has saved more than 1 billion kilowatt hours of energy, delivering $100 million in savings to our customers.  This also means we reduced the amount of CO2 released into the atmosphere by over 700,000 metric tons, equivalent to not acquiring and burning almost 4000 railcars of coal.  This matters because climate change is real.

Earlier this year, Vigilent announced its support for the Low-Carbon USA initiative, a consortium of leading businesses across the United States that support the Paris Climate Accord with the goal of reducing global temperature rise to well below 2 degrees Celsius.  Conservation plays its part, but innovation driving efficiency and renewable power creation will make the real difference.  Vigilent and its employees are fiercely proud to be making a tangible difference every day with the work that we do.

Beyond this remarkable energy savings milestone, I am very proud of the market recognition Vigilent achieved this year.  Bloomberg recognized Vigilent as a “New Energy Pioneer.”  Fierce Innovation named Vigilent the Best in Show:  Green Application & Data Centers (telecom category.)

Of equal significance, Vigilent has become broadly recognized as a leader in the emerging field of industrial IoT.  With our early start in this industry, integrating sensors and machine learning for measurable advantage long before they ever became a “thing,” Vigilent has demonstrated significant market traction with concrete results.  The industry has recognized Vigilent’s IoT achievements with the following awards this year:

TiE50                    Top Startup: IoT

IoT Innovator     Best Product: Commercial and Industrial Software

We introduced Vigilent prescriptive analytics this summer with shocking results, and I say that in a good way.  Our customers have uniformly received insights that surprised them.  These insights have ranged from unrealized capacity to failing equipment in critical areas.  The analytics are also helping customers meet SLA requirements with virtually no extra work and to identify areas ranging out of compliance, enabling facility operators to quickly resolve issues as soon as a temperature goes beyond a specified threshold.

Vigilent dynamic cooling management systems are actively used in the world’s largest colos and telcos, and in Fortune 500 companies spanning the globe.  We have expanded relationships with long-term partners’ NTT Facilities and Schneider Electric, who have introduced Vigilent to new regions such as Latin America and Greater Asia.  We signed a North America-focused partnership with Siemens, which leverages Siemens Demand Flow and the Vigilent system to optimize efficiency and manage data center challenges across the white space and chiller plant. We are very pleased that the world’s leading data center infrastructure and service vendors have chosen to include Vigilent in their solution portfolio.

We thank you, our friends, customers and partners, for your continued support and look forward to another breakout year as we help the businesses of the world manage energy use intelligently and combat climate change.

 

The Fastest Route to Using Data Analysis in Data Center Operations

voltThe transition to data-driven operations within data centers is inevitable.  In fact, it has already begun.

With this in mind, my last blog questioned why data centers still resist data use, surmising that because data use doesn’t fall within traditional roles and training, third parties – and new tools – will be needed to help with the transition. “Retrofitting” existing personnel, at least in the short term, is unrealistic.  And time matters.

Consider the example of my Chevy Volt.  The Volt illustrates just how quickly a traditional industry can be caught flat-footed in a time of transition, opening opportunities for others to seize market share. The Volt is as much a rolling mass of interconnected computers as it is a car. It has 10 million lines of code. 10 million!  That’s more than a F-22 Raptor, the most advanced fighter plane on earth.

The Volt of course, needs regular service just like any car.  While car manufacturers were clearly pivoting toward complex software-driven engines, car dealerships were still staffed with engine mechanics, albeit highly skilled mechanics.  During my service experience, the dealership had one guy trained and equipped to diagnose and tune the Volt.  One guy.  Volts were and are selling like crazy.  And when that guy was on vacation, I had to wait.

So, the inevitable happened.  Third party service shops, which were fully staffed with digitally-savvy technicians specifically trained in electric vehicle maintenance, quickly gained business.  Those shops employed mechanics, but the car diagnostics were performed by technology experts who could provide the mechanics with very specific guidance from the car’s data.  In addition, I had direct access to detail about the operation of my car from monthly reports delivered by OnStar, enabling me to make more informed driving, maintenance and purchase decisions.

Most dealerships weren’t prepared for the rapid shift from servicing mechanical systems to servicing computerized systems.  Referencing my own experience, the independent service shop that had been servicing my other, older car, very quickly transitioned to service all kinds of electric service vehicles.  Their agility in adjusting to new market conditions brought them a whole new set of service opportunities.  The Chevy dealership, on the other hand, created a service vacuum that opened business for others.

The lesson here is to transition rapidly to new market conditions.  Oftentimes, using external resources is the fastest way to transition to a new skillset without taking your eye off operations, without making a giant investment, and while creating a path to incorporating these skills into your standard operating procedures over time. 

During transitions, and as your facility faces learning curve challenges, it makes sense to turn to resources that have the expertise and the tools at hand.  Because external expert resources work with multiple companies, they also bring the benefit of collective perspective, which can be brought to bear on many different types of situations.

In an outsourced model, and specifically in the case of data analytics services, highly experienced and focused data specialists can be responsible for collecting, reviewing and regularly reporting back to facility managers on trends, exceptions, actions to take and potentially developing issues.  These specialists augment the facility manager’s ability to steer his or her data centers through a transition to more software and data intensive systems, without the time hit or distraction of engaging a new set of skills.  Also, as familiarity with using data evolves, the third party can train data center personnel, providing operators with direct access to data and indicative metrics in the short term, while creating a foundation for the eventual onboarding of data analysis operations.  

Data analysis won’t displace existing data center personnel.  It is an additional and critical function that can be supported internally or externally.  Avoiding the use of data to improve data center operations is career-limiting.  Until data analysis skills and tools are embedded within day-to-day operations, hiring a data analysis service can provide immediate relief and help your team transition to adopt these skills over time.  

Why Don’t Data Centers Use Data?

Data analysis doesn’t readily fall into the typical data center operator’s job description.   That fact, and the traditional hands-on focus of those operators, isn’t likely to change soon.

But turning a blind eye or ignoring the floodgate of data now available to data centers through IoT technology, sensors and cloud-based analytics is no longer tenable.  While the data impact of IoT has yet to be truly realized, most data centers have already become too complex to be managed manually.

What’s needed is a new role entirely, one with dotted line/cross-functional responsibility to operations, energy, sustainability and planning teams.

Consider this.  The aircraft industry has historically been driven by design, mechanical and engineering teams.  Yet General Electric aircraft engines, as an example, throw off terabytes of data on every single flight.  This massive quantity of data isn’t managed by these traditional teams.  It’s managed by data analysts who continually monitor this information to assess safety and performance, and update the traditional teams who can take any necessary actions.

Like aircraft, data centers are complex systems.  Why aren’t they operated in the same data-driven way given that the data is available today?

Data center operators aren’t trained in data analysis nor can they be expected to take it on.  The new data analyst role requires an understanding and mastery of an entirely different set of tools.  It requires domain-specific knowledge so that incoming information can be intelligently monitored and triaged to determine what constitutes a red flag event, versus something that could be addressed during normal work hours to improve reliability or reduce energy costs.

It’s increasingly clear that managing solely through experience and physical oversight is no longer best practice and will no longer keep pace with the increasing complexity of modern data centers.  Planning or modeling based only on current conditions – or a moment in time –  is also not sufficient.  The rate of change, both planned and unplanned, is too great.  Data, like data centers, is fluid and multidimensional. 

Beyond the undeniable necessity of incorporating data into day-to-day operations to manage operational complexity, data analysis provides significant value-added benefit by revealing cost savings and revenue generating opportunities in energy use, capacity and risk avoidance.  It’s time to build this competency into data center operations.