With Data Centers, What Can Happen Will Happen (Eventually).

Because data centers and telecom switching centers are designed to withstand failures without interrupting business operations, a 3 a.m. emergency due to a malfunctioning air conditioner should never occur – in theory. But Murphy’s Law says that if a single failure can create an emergency, it will. So, to date, operators have had to react to single-component failures as if they are business-critical. Because they might be.

In my previous blog, I pointed out the two components of risk: the probability of and the consequence of failure. While both of these components are important in failure analysis, it is the consequence of failure that’s most effective at helping decision-makers manage the cost of failure.

If you know there is a high probability of impending failure, but you don’t know the potential consequence, you have to act as though every threat has the potential for an expensive business interruption. Taking such actions is typically expensive. But if you know the consequence, even without knowing the probability of failure, you can react to inconsequential failures at your leisure and plan so that consequential failures are less likely.

In the past, the consequences of a failure weren’t knowable or predictable. The combination of Internet of Things (IoT) data and machine learning has changed all that. It’s now possible to predict the consequence of failure by analyzing large quantities of historical sensor data. These predictions can be performed on demand and without the need for geometrical data hall descriptions.

The advantage of machine learning-based systems is that predictive models are continually tuned to actual operating conditions. Even as things change and scale over time, the model remains accurate without manual intervention. The consequences of actions, in addition to equipment failures, become knowable and predictable.

This type of consequence analysis is particularly important for organizations that have a run-to-failure policy for mechanical equipment. Run-to-failure is common in organizations with severe capital constraints, but it only works, and avoids business interruptions, if the consequence of the next failure is predictable.

Predicting the consequence of failure allows an operations team to avoid over-reacting to failures that do not affect business continuity. Rather than dispatching a technician in the middle of the night, an operations team can address a predicted failure with minimal or no consequence during its next scheduled maintenance. If consequence analysis indicates that a cooling unit failure may put more significant assets at risk, the ability to predict how much time is available before a critical temperature is reached provides time for graceful shutdown – and mitigation.

Preventative maintenance carries risk, but equipment still needs to be shut off at times for maintenance. Will it cause a problem? Predictive consequence analysis can provide the answer. If there’s an issue with shutting off a particular unit, you can know in advance and provide spot cooling to mitigate the risks.

 The ability to predict the consequences of failure, or intentional action such as preventative maintenance, gives facility managers greater control over the reliability of their facilities, and the peace of mind that their operations are as safe as possible.

Consequence Planning Avoids Getting Trapped Between a Rack and a Hot Place

A decade of deploying machine learning in data centers and telecom switching centers throughout the world has taught us a thing or two about risk and reliability management.

In the context of reliability engineering, risk is often defined as the probability of failure times the consequence of the failure. The failure itself, therefore, is only half of the risk consideration. The resulting consequences are equally, and sometimes more, relevant. Data centers typically manage risk with redundancy to reduce the chances of failures that may cause a business interruption. This method reduces the consequence of single component failure. If failure occurs, a redundant component ensures continuity.

When people talk about the role of machine learning in risk and reliability management, most view machine learning from a similar perspective – as a tool for predicting the failure of single components.

But this focus falls short of the true capabilities of machine learning. Don’t get me wrong, predicting the probability of failure is useful – and difficult – to do. But it only has value when the consequence of the predicted failure is significant.

When data centers and telecom switching centers perform and operate as designed, the consequences of most failures are typically small. But most data centers don’t operate as designed, especially the longer they run.

Vigilent uses machine learning to predict the consequences of control actions. We use machine learning to train our Influence Map™ to make accurate predictions of cooling control actions, including what will happen when a cooling unit is turned on or off. If the Influence Map predicts that turning a particular unit off would cause a rack to become too hot, the system won’t turn that cooling unit off.

The same process can be used to predict the consequence of a cooling unit failure. In other words, the Influence Map can predict the potential business impact of a particular cooling unit failure, such as whether a rack will get hot enough to impact business continuity. This kind of failure analysis simultaneously estimates the redundancy of the cooling system.

This redundancy calculation doesn’t merely compare the total cooling capacity with the total heat load of the equipment. Fully understanding the consequence of a failure requires both predictive modeling and machine learning. Together, these technologies accurately model actual, real time system behavior in order to predict and manage the cost of that failure.

This is why the distinction between failures and consequences matter. Knowing the consequences of failure enables you to predict the cost of failure.

Some predicted failures might not require a 3 a.m. dispatch. In my next blog, I’ll outline the material advantages of understanding consequences and the resulting effect on redundancy planning and maintenance operations.

2016 and Looking Forward

2016-imageTo date, Vigilent has saved more than 1 billion kilowatt hours of energy, delivering $100 million in savings to our customers.  This also means we reduced the amount of CO2 released into the atmosphere by over 700,000 metric tons, equivalent to not acquiring and burning almost 4000 railcars of coal.  This matters because climate change is real.

Earlier this year, Vigilent announced its support for the Low-Carbon USA initiative, a consortium of leading businesses across the United States that support the Paris Climate Accord with the goal of reducing global temperature rise to well below 2 degrees Celsius.  Conservation plays its part, but innovation driving efficiency and renewable power creation will make the real difference.  Vigilent and its employees are fiercely proud to be making a tangible difference every day with the work that we do.

Beyond this remarkable energy savings milestone, I am very proud of the market recognition Vigilent achieved this year.  Bloomberg recognized Vigilent as a “New Energy Pioneer.”  Fierce Innovation named Vigilent the Best in Show:  Green Application & Data Centers (telecom category.)

Of equal significance, Vigilent has become broadly recognized as a leader in the emerging field of industrial IoT.  With our early start in this industry, integrating sensors and machine learning for measurable advantage long before they ever became a “thing,” Vigilent has demonstrated significant market traction with concrete results.  The industry has recognized Vigilent’s IoT achievements with the following awards this year:

TiE50                    Top Startup: IoT

IoT Innovator     Best Product: Commercial and Industrial Software

We introduced Vigilent prescriptive analytics this summer with shocking results, and I say that in a good way.  Our customers have uniformly received insights that surprised them.  These insights have ranged from unrealized capacity to failing equipment in critical areas.  The analytics are also helping customers meet SLA requirements with virtually no extra work and to identify areas ranging out of compliance, enabling facility operators to quickly resolve issues as soon as a temperature goes beyond a specified threshold.

Vigilent dynamic cooling management systems are actively used in the world’s largest colos and telcos, and in Fortune 500 companies spanning the globe.  We have expanded relationships with long-term partners’ NTT Facilities and Schneider Electric, who have introduced Vigilent to new regions such as Latin America and Greater Asia.  We signed a North America-focused partnership with Siemens, which leverages Siemens Demand Flow and the Vigilent system to optimize efficiency and manage data center challenges across the white space and chiller plant. We are very pleased that the world’s leading data center infrastructure and service vendors have chosen to include Vigilent in their solution portfolio.

We thank you, our friends, customers and partners, for your continued support and look forward to another breakout year as we help the businesses of the world manage energy use intelligently and combat climate change.

 

Why Don’t Data Centers Use Data?

Data analysis doesn’t readily fall into the typical data center operator’s job description.   That fact, and the traditional hands-on focus of those operators, isn’t likely to change soon.

But turning a blind eye or ignoring the floodgate of data now available to data centers through IoT technology, sensors and cloud-based analytics is no longer tenable.  While the data impact of IoT has yet to be truly realized, most data centers have already become too complex to be managed manually.

What’s needed is a new role entirely, one with dotted line/cross-functional responsibility to operations, energy, sustainability and planning teams.

Consider this.  The aircraft industry has historically been driven by design, mechanical and engineering teams.  Yet General Electric aircraft engines, as an example, throw off terabytes of data on every single flight.  This massive quantity of data isn’t managed by these traditional teams.  It’s managed by data analysts who continually monitor this information to assess safety and performance, and update the traditional teams who can take any necessary actions.

Like aircraft, data centers are complex systems.  Why aren’t they operated in the same data-driven way given that the data is available today?

Data center operators aren’t trained in data analysis nor can they be expected to take it on.  The new data analyst role requires an understanding and mastery of an entirely different set of tools.  It requires domain-specific knowledge so that incoming information can be intelligently monitored and triaged to determine what constitutes a red flag event, versus something that could be addressed during normal work hours to improve reliability or reduce energy costs.

It’s increasingly clear that managing solely through experience and physical oversight is no longer best practice and will no longer keep pace with the increasing complexity of modern data centers.  Planning or modeling based only on current conditions – or a moment in time –  is also not sufficient.  The rate of change, both planned and unplanned, is too great.  Data, like data centers, is fluid and multidimensional. 

Beyond the undeniable necessity of incorporating data into day-to-day operations to manage operational complexity, data analysis provides significant value-added benefit by revealing cost savings and revenue generating opportunities in energy use, capacity and risk avoidance.  It’s time to build this competency into data center operations.

Does Efficiency Matter?

Currently, it seems that lots of things matter more than energy efficiency. Investments in reliability, capacity expansion and revenue protection all receive higher priority in data centers than any investment focusing on cutting operating expenses through greater efficiency.

So does this mean that efficiency really doesn’t matter? Of course efficiency matters. Lawrence Berkeley National Labs just issued a data center energy report proving just how much efficiency improvements have slowed the data center industry’s energy consumption; saving a projected 620 billion kWh between 2010 and 2020.

The investment priority disconnect occurs when people view efficiency from the too narrow perspective of cutting back.

Efficiency, in fact, has transformational power – when viewed through a different lens.

Productivity is an area ripe for improvements specifically enabled by IoT and automation. Automation’s impact on productivity often gets downplayed by employees who believe automation is the first step toward job reductions. And sure, this happens. Automation will replace some jobs. But if you have experienced and talented people working on tasks that could be automated, your operational productivity is suffering. Those employees can and should be repurposed for work that’s more valuable. And, as most datacenters run with very lean staffing, your employees are already working under enormous pressure to keep operations working perfectly and without downtime. Productivity matters here as well. Making sure your employees are working on the right, highest impact activities generates direct returns in cost, facility reliability and job satisfaction.

Outsourcing is another target. Outsourcing maintenance operations has become common practice. Yet how often are third party services monitored for efficiency? Viewing the before and after performance of a room or a piece of equipment following maintenance is telling. These details, in context with operational data, can identify where you are over-spending on maintenance contracts or where dollars can be allocated elsewhere for higher benefit.

And then there is time. Bain and Company in a 2014 Harvard Business Review article called time “your scarcest resource,” and as such is a logical target for efficiency improvement.  Here’s an example. Quite often data center staff will automatically add cooling equipment to facilities to support new or additional IT load. A quick and deeper look into the right data often reveals that the facilities can handle the additional load immediately and without new equipment. A quick data dive can save months of procurement and deployment time, while simultaneously accelerating your time to the revenue generated by the additional IT load.

Every time employees can stop or reduce time spent on a low value activity, they can achieve results in a different area, faster. Conversely, every time you free up employee time for more creative or innovative endeavors, you have an opportunity to capture competitive advantage. According to a report by KPMG as cited by the Silicon Valley Beat, the tech sector is already focused on this concept, leveraging automation and machine learning for new revenue advantages as well as efficiency improvements.

“Tech CEOs see the benefits of digital labor augmenting workforce capabilities,” said Gary Matuszak, global and U.S. chair of KPMG’s Technology, Media and Telecommunications practice.

“The increased automation and machine learning could enable new ways for tech companies to conduct business so they can add customer value, become more efficient and slash costs.”

Investments in efficiency when viewed through the lens of “cutting back” will continue to receive low priority. However, efficiency projects focusing on productivity or time to revenue will pay off with immediate top line effect. They will uncover ways to simultaneously increase return on capital, improve workforce productivity, and accelerate new sources of revenue. And that’s where you need to put your money.

Breaking Down Communication Barriers with IoT

The Internet of Things holds the unprecedented opportunity to improve the long-standing conflict between facilities, IT and sustainability managers.  Traditionally, these three silos are orthogonal, and don’t share each other’s priorities.

Data generated from more granular sensing in data centers reveals information that has traditionally been difficult to access, and not easily shared between groups.  This data can provide both an incentive and a means to work together by establishing a common source for business discussions.  This concept is becoming increasingly important.  As Bill Kleyman said in a Data Center Knowledge article projecting Data Center and Cloud Considerations for 2016: “The days of resources locked in silos are quickly coming to an end.”  We agree.  While Kleyman was referring to architecture convergence in the reference we believe his forecast applies equally forcefully to data.  Multi-group access to more comprehensive data has collaborative power.  IoT contributes to both the generation of such data and the ability to act on it, instantaneously.

Consider the following examples of how IoT operations can accelerate decision-making and collaboration between IT and Facilities.

IT Expansion Deployments

As service shifts to the network edge, or higher traffic is needed for a particular geographic region, IT is usually tasked to identify the most desired sites for these expansions.  In bigger companies, the possible sites can number 50 or more.  IT and Facilities need to quickly determine a short list.

A highly granular view of the actual (versus designed) operating cooling capacity available in each of the considered sites would greatly speed and simplify this selection.  With operating cooling capacity information readily in hand, facilities can easily create a case for the most attractive sites from a cost and time perspective, and/or create a business case for the upgrades necessary to support IT’s expansion deployments.

Data can expose previously hidden or unknowable information.  Capacity planners are provided with the right information for asset deployment in the right places, faster and with less expense.  Everyone gets what they want.

Repurposing capital assets

After airflow is balanced, and redundant or unnecessary cooling is put into standby through automated control, IT and facilities can view the real-time amount of cooling actually available in a particular area.  It becomes easy to identify rooms that have way more cooling than needed.  The surplus cooling units can be moved to a different part of the facility, or to a different site as needed.

IoT powered by smart software can thus expose inefficient capital asset allocation.  Rather than spending money on new capital assets, existing capital can be moved from one place to another.  This has huge and nearly instant financial benefits.  It also establishes a method of cooperation between the facilities team that is maintaining the cooling system and the IT team that needs to deploy additional IT assets and that is tasked with paying for additional cooling.

In both situations, data produced by IoT becomes the arbiter and the language on which the business cases can be focused.

Data essentially becomes the “neutral party.”

All stakeholders can benefit from IoT-produced data to make rational and mutually understood decisions.  As more IoT-based data becomes available, stakeholders who use it to augment their intuition will find that data’s collaborative power is profitable as well as insightful.